eComtics
Unified AI platform for end-to-end eCommerce Analytics to enhance customer experience
Why eComtics?
eComtics combines in-built predictive analytics and multi-source customer data, unlocking meaningful relationships between customers and products to drive conversions and increase revenue.
Read More
Functions of eComtics
eComtics combines Machine Learning algorithms with Big Data technologies to create state-of-the-art eCommerce analytics platform with:
- Personalized marketing
- Recommendation Engine
- Pricing Analytics Engine
- Sentiment Analysis
Read More

How eComtics works?
eComtics combines big data technologies such as Hadoop, NoSQL data stores, in-memory analytic engines, massively parallel processing analytic databases and machine learning algorithms to deliver a captivating user experience on your eCommerce website.
Read More

Why eComtics?
Unified AI Powered eCommerce Analytics
eComtics has everything under one roof: data integration, data preparation and profiling, advanced analytics, machine learning, visualization and data export.

Deploy Anywhere
eComtics supports cloud, on-premise or hybrid deployments to align with your goals.

API Endpoints
eComtics provides API Endpoints to manage data and deliver analytics, bridging the gap between data and delivery.

Zero Code
eComtics delivers state-of-the-art relevant analytics to the ecommerce platform without the need to write a single line of code through a simple, configurable interface: analytical power at your fingertips, instantly.

On Demand Scalability
eComtics provides the ability to scale the system dynamically based on application demands without any downtime.

Integration with major eCommerce Platforms
eComtics enables integration with major eCommerce platforms such as Shopify, BigCommerce, Magento Commerce and WooCommerce.

Functions of eComtics
Personalized Marketing
eComtics helps reach customers with granular one-to-one personalised messaging and promotions.
Highlights:
- Devise communication strategies to deliver relevant marketing messages to targeted customers
- Predict the customer’s response based on product appeal, offer receptivity and frequency of use

Recommendation Engine
eComtics AI models help identify effective cross-sell / up-sell strategies based on historic purchase and customer preferences.
Highlights:
- Identify products that sell in conjunction with each other on a dynamic basis, linking them with historic purchases to recommend offers and promotions
- Identify products that drive the purchase of primary items

Pricing Analytics Engine
eComtics’ AI-based pricing engine is designed to recommend optimum pricing of a product based on dynamically forecasted demand as well as effect of offers, promotions, competitor analysis, etc.
Highlights:
- Maximize overall e-tailer profit through dynamic pricing: daily, seasonal, promotional and markdown
- Manage competitive and complementary product pricing (cross-elasticity)

Sentiment Analysis
eComtics uses advanced NLP algorithms to analyze overall sentiment using customer comments, feedback and social media interactions for effective reputation management.
Highlights:
- Helps to understand the overall customer sentiment for the products to increase brand/product affinity
- Assess the market needs from the voice of the customer

Other unique features of eComtics
Some other unique features of eComtics are ontologies, knowledge graphs, image search and SEO.
Highlights:
- eComtics search engine boosts the relevance of the queries dynamically based on user profile and browsing activity. Not only in words, but search by images too
- eComtics knowledge graph enables insights into customer preferences by correlating customer profiles with products. This enhances customer experience and drives revenue

How eComtics works?
eComtics Component | Models | Component Description |
Personalized Marketing | Clustering Algorithms, Regression Analysis, Association rules, Markov Chain. | Drawing from the existing customer data , eComtics machine learning models analyse billions of consumer interest variables and touch points for identifying specific customer interests and group customers with similar interests for effective targeting |
Recommendation Engine | Content based filtering, Collaborative filtering, Multi-criteria recommender systems | eComtics uses appropriate filtering algorithms to extract the relevant information required to make the final recommendations. |
Pricing Engine | Simulations, Heuristic Solvers, Multi Armed Bandit Algorithm | eComtics machine learning models dynamically forecast demand and use a heuristic solver to search for relevant promotional campaigns to maximize total profit across all products in the category. At the end, a what-if analysis is done to quantitatively assess the pricing decisions. |
Sentiment Analysis | Natural Language Processing (NLP), Rules-based Sentiment Analysis | eComtics sentiment analysis combines machine learning techniques and rules to assign weighted scores to topics, entities, themes within customer comments to infer customer sentiments. |